# Install the version of zooper used to create these data
#remotes::install_github("InteragencyEcologicalProgram/zooper", "v2.3.1")
library(zooper)
library(dplyr)
library(lubridate)
# Zooplankton community data, with taxonomic resolution fixed and all variables retained
zooplankton_community<-Zoopsynther(Data_type="Community")%>% # Create dataset with zooper
select(Source, Station, Latitude, Longitude, Year, Date, Datetime, SampleID, TowType, AmphipodCode, Tide, #Re-order variables
BottomDepth, Chl, Secchi, Temperature, Turbidity, Microcystis, pH, DO, SalSurf, SalBott,
SizeClass, Volume, Phylum, Class, Order, Family, Genus, Species, Taxname, Lifestage, Taxlifestage,
CPUE, Undersampled)
# Raw zooplankton catch data
zooplankton<-zooper::zoopComb%>% #Pull data from zooper
select(SampleID, SizeClass, Volume, Taxname, Lifestage, CPUE) # Remove variables present in other tables and Re-order variables
environment<-zooper::zoopEnvComb%>% #Pull data from zooper
select(Source, Station, Latitude, Longitude, Date, Datetime, SampleID, Tide, TowType, AmphipodCode, # Select and re-order variables
BottomDepth, Chl, Secchi, Temperature, Turbidity, Microcystis, pH, DO, SalSurf, SalBott)
stations<-zooper::stations%>% #Pull data from zooper
select(Source, Station, Latitude, Longitude) # Re-order variables
taxonomy <- zooper::crosswalk%>% #Pull data from zooper
select(Phylum, Class, Order, Family, Genus, Species, Taxname, Level)%>% # Re-order variables and remove variables present in other tables
distinct() # Remove any duplicated rows after selecting only taxonomic variables
taxa_lists<-zooper::crosswalk%>% #Pull data from zooper
select(-LI_Meso, -LI_Micro, -Level, -Phylum, -Class, -Order, -Family, -Genus, -Species)%>% # Remove variables present in other tables
mutate(across(c(EMP_Micro, EMP_Meso, EMP_Macro, STN_Meso, STN_Macro, FMWT_Meso,
FMWT_Macro, twentymm_Meso, FRP_Meso, FRP_Macro, YBFMP, DOP_Meso, DOP_Macro),
~if_else(is.na(.x), FALSE, TRUE)))%>%# Convert organism codes into a binary TRUE/FALSE indicating if taxa are counted in each survey and size class.
distinct()%>% # Remove duplicated rows now that organism codes are removed
mutate(across(c(Intro, EMPstart, EMPend, FMWTstart, FMWTend, twentymmstart,
twentymmend, twentymmstart2, DOPstart, DOPend), ~year(.x)),
across(c(Intro, EMPstart, EMPend, FMWTstart, FMWTend, twentymmstart,
twentymmend, twentymmstart2, DOPstart, DOPend), ~if_else(.x<1900 | .x>2400, NA, .x)))%>%
select(Taxname, Lifestage, EMP_Micro, EMP_Meso, EMP_Macro, STN_Meso, STN_Macro, FMWT_Meso,
FMWT_Macro, twentymm_Meso, FRP_Meso, FRP_Macro, YBFMP, DOP_Meso, DOP_Macro,
Intro, EMPstart, EMPend, FMWTSTNstart=FMWTstart, FMWTSTNend=FMWTend, twentymmstart,
twentymmend, twentymmstart2, DOPstart, DOPend) #Re-oroder and rename variables for consistency
undersampled <- zooper::undersampled%>% #Pull data from zooper
select(SizeClass, Taxname, Lifestage) # Re-order variables
# The study_metadata tables and biomass_mesomicro tables are pulled directly from their spreadsheets. They are also not present in zooper.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.